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ABSTRACT

A trademark is an essential symbol of a company, consisting of a semantically rich image under 
ordinary circumstances. The popularity of a company can be measured by the frequency of its 
trademark being used. Therefore, efficiently retrieving trademark images would directly contribute to 
the detection of popular companies. However, most mainstream retrieval methods are not especially 
pertinent to trademark image retrieval. To solve this problem, a combination of the ResNet50 network 
and Autoencoder with local sensitive hashing (LSH) is used to conduct full cross-checking, which 
significantly improves the effectiveness of trademark image retrieval. Meanwhile, image super-
resolution-based sparse coding is also proposed to achieve high-precision trademark image retrieval 
and its effect is particularly significant for challenging trademark images. Finally, the authors conduct 
extensive experiments on a high-quality database to demonstrate the substantial effectiveness of the 
proposed methods.
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1. INTRODUCTION

With rapid changes occurring in the global economy and ways of doing business, the fortunes of 
companies and industries are also changing rapidly. Researchers, investors, and policy-makers are 
keen to face these changes proactively. They invest a great deal of resources to collect and analyse 
data to understand business performance and, more importantly, to predict the future of a company. 
One important measurement of a company’s performance and its potential is its popularity with the 
general public. In particular, if a company’s trademark appears frequently, it can indicate that the 
company is highly popular. Consequently, retrieving trademark images efficiently and accurately is 
becoming increasingly important.

Image retrieval technology has gone through three stages of development: text-based image 
retrieval (TBIR), content-based image retrieval (CBIR), and semantic-based image retrieval. TBIR is 
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known as “searching images by tags”. This method is simple but time-consuming and labour-intensive 
because tags and indices such as titles, authors, and other metadata attributes are added by manual 
annotation. There were enormous amount of trademarks registered worldwide (World Intellectual 
Property Organization, 2018). Since the volume of digital image data on the internet has increased 
rapidly, along with the number of trademark images, TBIR is unsuitable for trademark retrieval from 
the internet where images lack annotation.

In contrast to TBIR, CBIR uses features that can be extracted automatically to retrieve images, 
avoiding the subjectivity of manual description, and improving retrieval efficiency. Low-level visual 
features include colour, texture, shape, etc., and different feature representations require different 
similarity measurement methods. Colour is the most intuitive physical feature of colour images; 
the methods available to describe colour include colour histograms (Swain & Ballard, 1991), 
colour correlograms (Huang et al., 1997), and colour coherence vectors (Pass et al., 1997). Texture 
is a measurement of the relationship between pixels in a local area; its purpose is to describe the 
spatial distribution of grey levels in the neighbourhood of pixels. Shape descriptors are even more 
important than colour or texture descriptors and can be grouped into contour-based and region-
based approaches. The former uses image boundary information, while the latter uses information 
on the grey distribution in a certain area. The Fourier descriptor (Del Vecchio & Salvini, 2000) is 
one of the most commonly studied and used contour-based shape descriptors. It is characterized 
by good computational performance and is easy to normalize. However, it is unable to capture the 
local representation of shapes and is sensitive to boundary noise and variations, leading to the Gibbs 
phenomenon when used to reconstruct complex trademarks.

In addition to low-level features, images can be analysed according to their high-level semantic 
content, i.e., what they conceptually represent. Machine learning and neural network models such as 
AlexNet (Krizhevsky et al. 2017), VGGNet (Simonyan & Zisserman, 2014), Inception V4 (Szegedy 
et al., 2017), ResNet (He et al, 2016), and DenseNet (Huang et al., 2017) have been widely used due 
to their strength in extracting highly semantic and abstract features and realizing nonlinear feature 
mapping (Perez et al., 2018). Some methods achieve improved performance through deep learning. 
An end-to-end model (Mafla et al., 2021) combines text and visual features to achieve fine-grained 
classification and image retrieval through a multimodal inference module. Recently, more novel deep 
learning models have been proposed. CVNet (Lee et al., 2022) adopts geometric verification after 
a global search with global descriptor matching and local feature matching. Global search quickly 
performs a rough search across the entire database, and geometric validation reorders the results of 
a rough search by precisely assessing only the candidates identified by the global search. ViT-Slim 
(Chavan et al., 2022) replaces the convolutional neural network in network slimming with a transformer 
to realize more flexible and efficient visual retrieval and classification. Zhao et al. drew on the idea of 
dense retrieval, discretized images and texts into tokens, and aligned them across modalities, greatly 
improving the efficiency of large-scale graphic retrieval (2023).

In the retrieval of trademark images, the characteristics of the trademark image should be fully 
considered. Traditional image retrieval methods are difficult to apply directly to trademark image 
retrieval. Although the improved sparse coding-based method (Sun et al., 2019), spatial pyramid 
matching-based method (Lazebnik et al., 2006), and GIST-based similarity calculation method (Hays 
& Efros, 2007) can achieve image retrieval with relatively few reference images, there are still certain 
limitations in their application. Therefore, we are attempting to draw on the advantages of traditional 
methods as much as possible and optimize them according to actual needs. Many practical methods 
(Bao et al, 2021; Zou et al., 2022; Trappey et al., 2021) have been proposed by experts and applied to 
solve practical problems, achieving convincing results in their fields of application. Although the above 
methods cannot be directly used to solve our problem, their entire strategy can serve as a reference.

As a classic network model, ResNet performs well for image feature extraction. Its small parameter 
count makes model loading and weight training fast. In addition, the pretrained ResNet50 model, 
trained on a large set of open-source image data, is recognized as a high-performing feature extraction 
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model for tasks such as image captioning. Thus, in the present study, we make full use of ResNet (He et 
al, 2016) as the first method to extract image features. To make our method more robust, we also employ 
Autoencoder (Bank et al., 2023), a classic deep learning model with advantages in data denoising 
and dimensionality reduction. It is worth mentioning that when Autoencoder is combined with local 
sensitive hashing (LSH), an image query indexing technology for dimensionality reduction, the model 
performs well in terms of computational time while remaining relatively accurate. Considering the 
characteristics of trademark images and the practical application value of deep learning models, a 
combination of the ResNet50 network and Autoencoder with LSH would be applicable. To further 
improve the accuracy of trademark image retrieval, we perform image super-resolution reconstruction 
(Dong et al., 2015) on the trademark images and conduct trademark image retrieval based on sparse 
coding (Arora et al., 2015; Yang et al., 2009). This strategy not only improves the accuracy of retrieval 
but also has significant effects on challenging trademark images.

The main contributions of this paper are as follows:

1. 	 A combination of the ResNet50 network and Autoencoder with LSH is employed for trademark 
image retrieval, to ensure relatively high accuracy without requiring extensive computational 
resources.

2. 	 Using image super-resolution-based sparse coding, we achieve more accurate trademark image 
retrieval, which demonstrates consistently excellent experimental results even for challenging 
trademark images.

3. 	 Our method can be effectively applied to detect popular companies and serve an important 
function in the field of economics.

2. METHODS

In this section, we will first introduce the ResNet50 network and Autoencoder with LSH in order. 
Then, we will introduce an image super-resolution-based sparse coding model. During the model 
introduction, we will focus on providing sufficient details and implementation processes.

2.1 ResNet50
Convolutional neural network (CNN) architecture is widely used in image processing. It processes 
the input data layer by layer and automatically learns the network parameters. Loss is calculated in 
each processing layer and propagated backwards to optimize the network parameters.

Figure 1 shows the main layers in the CNN. As the core block, the convolutional layer extracts 
features through several convolutional kernels. The pooling layer is a form of nonlinear downsampling. 
The subsequent rectified linear unit excitation layer removes negative values (by setting them to zero), 
which boosts the training speed of the neural network without notable damage to the accuracy of 
generalization. In the fully connected layer, each neuron is connected to every neuron in the adjacent 
layers. Finally, the loss layer defines how the training penalizes the deviation of the predicted outputs 
from the true labels.

A common concern “vanishing gradients,” which occur as the number of layers increases. To 
address this problem, ResNet utilizes shortcut connections as a solution to guarantee that more layers 

Figure 1. The main layers of CNN
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will not lead to worse accuracy. In this way, it generates better accuracy by allowing the addition 
of more layers. Two basic blocks in ResNet are the identity block and the convolution block. We 
chose the well-trained ResNet50 due to its relatively small parameter size. Its structure is illustrated 
in Table 1. Additionally, we present various similarity measures in Table 2. In this paper, we select 
the most suitable similarity measures for different methods to solve practical problems. Considering 
that 2048-dimensional eigenvectors are used to represent images in this process, the common cosine 
distance is used to measure similarity.

2.2 Autoencoder With LSH
Autoencoding (Bank et al., 2023) is a type of data compression algorithm that can be used to learn 
efficient data coding (z) of an input image (x) in an unsupervised manner. It is data-specific and 

Table 1. Structure of ResNet50
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lossy. We use the autoregressive autoencoder to extract the compressed feature representation of 
trademark images.

The encoder transforms the eigenvector x of an input image into a condensed feature representation 
z by function f(x). In this case, z has a smaller dimension than x. The decoder analyses the condensed 
representation z by function g(z) to reconstruct a copy of the input image as x’. Using stochastic 
gradient descent, the parameters of the encoder and decoder functions can be optimized to minimize 
the reconstruction loss (deviation between x and x’). Figure 2 is an illustration of the main process 
to build the autoregressive autoencoder and the core structure of an autoencoder.

Traditional methods take a long time to retrieve images from a large dataset because they use 
images’ statistical characteristics. Many high-dimensional indexing technologies are used to shorten 
the retrieval time. Common technologies include tree-based indexing, cluster-based indexing, inverted 
file indexing, and hash-based indexing. For images, LSH, a kind of hash-based indexing method, 
has proven to be suitable for our experiment. It is used to build a query index after eigenvectors are 
extracted through an autoencoder. A proper hash function that maps high-dimensional features to 
low-dimensional features is needed. It maintains the maximum possible similarity by mapping similar 
eigenvectors to the same collision bucket; thus, points that are close together in the original feature 
space are still close to each other in the generated feature space.

The step-by-step instructions for combining Autoencoder with LSH are shown in Figure 3. First, 
training images are selected and normalized, and we train the encoder on them. Second, we use the 
encoder to predict the eigenvector of 100-dimensional images. A LSH class helps to build 32-bit-long 
binary LSH indexes. Ultimately, based on similarity, specific images in the dataset are retrieved using 
a dictionary that maps binary hashes to image IDs.

The 100-dimensional vectors are then transformed into a 32-bit-long binary hash code in this 
process, and Euclidean distance is used for comparison and retrieval. In particular, in the execution of 
the above models, alternative extended queries can be applied to obtain more realistic experimental 
results.

2.3 Image Super-Resolution-Based Sparse Coding
The above models can achieve relatively reliable image retrieval for trademark images and have 
relatively fast computation speeds. However, if we need to further improve the retrieval accuracy, 
especially for challenging trademark images, we need to design a more sophisticated model. 
Specifically, image super-resolution reconstruction is performed on the trademark image, and then 
sparse coding is applied on this basis to calculate the similarity for image retrieval.

SRCNN (Dong et al., 2015) is an image super-resolution reconstruction model based on deep 
learning. It trains a deep neural network to map low-resolution images to high-resolution images and 

Figure 2. The main process to build an autoregressive autoencoder
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realizes the super-resolution reconstruction of images. The SRCNN is composed of three parts. Initially, 
during patch extraction, it divides patches of the image and extracts the features by convolution. Each 
image patch is mapped to a low-resolution dictionary, and a group of vectors is obtained to express 
the image after preprocessing. Then, in nonlinear mapping, the low-resolution features are mapped 
to high-resolution features to find the high-resolution features corresponding to image patches. The 
high-dimensional vector of the image patch obtained in the first step is mapped to another high-
dimensional vector, and the high-resolution image patch is expressed through this high-dimensional 
vector for the final reconstruction. Finally, in the resolution process, the network reconstructs images 
based on high-resolution features. The final high-resolution image patches are aggregated to form 
the final high-resolution image. The reconstruction part is a linear operation and is implemented by 
a linear function. Using the above model, high-quality super-resolution reconstruction of trademark 
images can be achieved.

As the essential representative detector, sparse coding (Arora et al., 2015; Yang et al., 2009) can 
represent trademark images fully, on the foundation of exact representation, and the similarity between 
different trademark images can be calculated. The essential content of sparse coding is that some 
patches from the complete training process are used to represent the trademark image contributing 
to similarity evaluation. Figure 4 illustrates the essential process of sparse coding. After the above 
process is completed, Euclidean distance is used to retrieve the trademark images.

3. EXPERIMENTS

To verify the effectiveness of the ResNet50 network and Autoencoder with LSH, we established a 
naturalistic trademark image database containing tens of thousands of representative trademark images.

Figure 3. The step-by-step instructions for combining autoencoder and LSH
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Our database consists of trademark images from sports and other industries. Based on our 
hypothesis, the more popular a brand is, the more its trademark will be represented in the database. 
Additionally, we included thousands of trademark images belonging to additional industries from 
the FlickrLogo-47 dataset (Universität Augsburg, n.d.). Some trademark image instances are shown 
in Figure 5.

First, we tested the effectiveness of ResNet50. We input one image of each of the Nike and 
Reebok trademarks and retrieved the most similar trademark images, partial representative results 
after screening are shown in Figure 6.

Similarly, we tested the effectiveness of Autoencoder with LSH. The same Nike and Reebok 
trademark images were input, and the most similar trademark images were retrieved; partial 
representative results after screening are shown in Figure 7.

Figure 4. The essential process of image representation by sparse coding

Figure 5. Trademark image instances from FlickrLogo-47

Figure 6. Partial representative results after screening using ResNet50
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In the same way, we conducted multiple other experiments and carefully analysed the experimental 
results. Both models can quickly retrieve target trademark images with relatively high accuracy. In 
particular, when the two models are combined, retrieval accuracy can be further improved.

Next, we validated the image super-resolution-based sparse coding through adequate comparisons. 
In particular, we built a more representative database that includes not only regular trademark images 
but also some challenging trademark images, such as images with noise, lower resolution, and missing 
regions. By considering the widest possible variety of scenarios, we can verify the effectiveness of 
the method more thoroughly. Through comparison with some appropriately modified typical baseline 
methods (the improved sparse coding-based method [Sun et al., 2019], the spatial pyramid matching-
based method [Lazebnik et al., 2006], and the GIST-based similarity calculation method [Hays & 
Efros, 2007]), we observe that our method could be able to achieve the retrieval of target trademark 
images most accurately as evaluated by both AP values and AUC values (Figures 8 and 9).

To further test the role of super-resolution reconstruction and sparse coding, we added an ablation 
experiment to verify these two steps. From the experimental results in Figure 10, we can see that 
each step plays an important role, and there is a significant decrease in retrieval accuracy if any of 
these steps are abandoned or replaced by another common method. Similarly, in Figure 11, the AUC 
values further illustrate the necessity of the two steps.

Figure 7. Partial representative results after screening using autoencoder with LSH

Figure 8. AP values calculated using our method and baseline methods
Note. Baseline 1: The improved sparse coding-based method. Baseline 2: The spatial pyramid 
matching-based method. Baseline 3: The GIST-based similarity calculation method.
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Figure 9 AUC values calculated using our method and baseline methods
Note. Baseline 1: The improved sparse coding-based method. Baseline 2: The spatial pyramid 
matching-based method. Baseline 3: The GIST-based similarity calculation method.

Figure 10. Comparison of AP values between our method and baseline methods
Note. Baseline method 1 is to retrieve trademark images without using the image super-resolution 
reconstruction step. Baseline method 2 is to retrieve trademark images using only a common encoding 
model.
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Overall, the above experiments are generally in line with expectations. The methods of ResNet50 
and Autoencoder with LSH could retrieve trademark images quickly. In particular, the combination 
of the two methods could further improve the effectiveness of trademark image retrieval. The image 
super-resolution-based sparse coding method shows superiority in terms of accuracy, especially when 
the database contains more challenging trademark images. In comparison with multiple baseline 
methods, it is the best performer in terms of accuracy and other aspects. Furthermore, the steps of 
image super-resolution reconstruction and sparse coding are fundamentally reasonable and play a 
sufficient role.

4. CONCLUSION

In this paper, ResNet50 and the Autoencoder with LSH are effectively combined to achieve satisfactory 
trademark image retrieval with reduced consumption of computational power. Furthermore, to enhance 
the precision of trademark image retrieval and address challenging trademark images comprehensively, 
the image super-resolution-based sparse coding method is fully utilized. Moreover, we conduct 
sufficient experiments on an authoritative database and compare the proposed methods with some 
classic methods to better verify their effectiveness. Our methods can effectively detect popular 
companies by retrieving trademark images, serving an important function in the field of economics.
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